Improve your Laboratory Productivity by Automating & Miniaturizing Sample Preparation for GCMS & LCMS Analysis

26MAR 2021

Webinaire

CECM

- Privately-owned centre of excellence in the field of analytical solutions
- The Research Institute for Chromatography (RIC) was founded by Prof. Pat Sandra in 1986, now headed by Tom & Koen Sandra
- Main office & labs based in **Belgium** (Kortrijk)
- Sales office in Lyon
- Supporting customers in various industries with scientific know-how & technical expertise for almost 35 years

- Since many years keywords in sample prep are:
 - Automation
 - Miniaturization
 - Solventless ("green")
 - High productivity:
 - Samples/day
 - Cost/sample
 - Safety
- Instrumentation: orders of magnitude increase in sensitivity using state-of-the-art MS (MS/MS, TOF...)
- Some examples...

... No Sample Preparation

Direct liquid injection of extracts

- Plant extracts: presence of non-volatile material
 - Example: atranol, chloroatranol in moss extracts
 - Observation: contamination & ghost peaks
- Pesticides in Food
 - QuEChERS: Quick, easy...but above all: dirty
- Solution: automated liner exchange (Gerstel ALEX)

Direct liquid injection of extracts: PTV with ALEX

Direct liquid injection of extracts & thermal extraction: TDU - PTV

Liquid injection of extract directly into a TDU insert

Thermal extraction (TE)

Analysis...

TDU insert \rightarrow single use

Inlet liner /column / detector protected

Miniaturization example: Trace analysis of POPs in water using μ LLE followed by LVI-PTV injection and GC-MS/MS

Reference method (ISO 28540)	Automated
1 L water + IS	15 mL + IS
Target LOD: 1 ng/L	Target LOD: 1 ng/L = 15 pg/15 mL
LLE with 25 mL hexane	μLLE with 3 mL hexane
100% recovery: 1 ng/25 mL	100% recovery: 15 pg/3 mL
Recover organic phase	Centrifuge (?)
Drying on Na ₂ SO ₄	Transfer 1 mL to 2 mL vial with Na ₂ SO ₄ 100% recovery: 5 pg/1 mL
Concentration to 1 mL	Vortex & centrifuge (?)
Final concentration: 1 ng/mL = 1 pg/µL	Final concentration: 5 pg/mL = fg/µL
GC-MS analysis	GC-MS/MS analysis
1 μL injection	40 μL injection (LVI-PTV)
Amount on-column: 1 pg	Amount on-column: 0.2 pg

 $MS \rightarrow MS/MS$

robotic^{pro}

Autosampler configuration: lab-on-a-rail

Flexible configuration Module selection according to needs Single or multiple application ? Software control

- Overlap of sample preparation & analysis
- Just-in-time sample preparation
- Calibration included

μLLE + LVI PTV GC-MS/MS – Repeatability & LOQ

Miniaturization & automation of mineral oil analysis (HOI, TPH) – based on ISO 9377

- In-vial extraction
- In vial clean-up (Florisil)
- COC-based LVI on new interface

Extension: MOSH/MOAH analyzer

- LC clean-up & fractionation of MOSH/MOAH fractions
- Injection of each fraction using COC based inlet (Grob-type LCGC interface)
- Dual FID configuration
- Dedicated software
- Optional: automated epoxidation for removal of alkenes (squalene)

Solventless extraction: SBSE for Aroma profiling

- Classical methods:
 - LLE (SDE, SAFE)
- SBSE (Twister):
 - °1999
 - Solvent free
 - Very high enrichment factor
 - Robust & high loadability
 - More sensitive than SPME
- Thermal desorption
 - Solventless
 - Full transfer
- GC-TOF MS
 - Untargeted analysis ("scan")
 - High sensitivity
 - Powerful deconvolution

SBSE – TD – GC-TOF MS analysis of lager beer

Automated Sample Preparation in Lipid Analysis

- Biological samples:
 - Small volumes
 - Homogeneous (blood, serum)
 - Sample preparation in 2 mL vials
- Food samples
 - Various matrices: fats, oils, fatty foods (nuts), diary products
 - Large sample size (homogeneity?)
 - Sample preparation includes:
 - Extraction
 - Saponification
 - Derivatization
 - LLE + centrifugation
 - concentration

aroup

FAME analysis in Food: multiple methods used \rightarrow customer configuration for 3 FAME methods

- 50 mg fat or 250 mg milk powder in 20 mL vial
- + 4 ml ISTD solution in MTBE
- Vortex
- + 4 mL NaOCH₃ (5 % in MeOH)
 → Start reaction
- Vortex
- WAIT
- + 2 mL hexane (180s after "start reaction")
- + 8 mL buffer
- Vortex & Centrifuge
- Transfer 1 mL to 2 mL vial with CaCl₂
- Vortex (+wait)
- Inject 1 μL

Installation in Routine (QC) Laboratory

Fractionation & GC/LC-MS Analysis of Intact Lipids

Configuration includes: SPE & mVAP (vacuum concentration)

LC-Q-TOF MS analysis of intact lipid fractions

Automated sample preparation and analysis of 2-MCPD, 3-MCPD and glycidol in edible oils and fats

- Bound 3-MCPD and glycidol in edible fats and oils
 - Glycidyl ester (GE) -> monoester

• 2- and 3- MCPD fatty acids esters -> mono- or di-esters

Automated sample preparation and analysis of 2-MCPD, 3-MCPD and glycidol in edible oils and fats

- MPS Robotic Dual head + GC triple quadrupole MS
- Method:
 - Add ISTD
 - Alkaline transesterification with sodium methoxide in methanol at 10°C (exactly 12 min)
 - Reaction with NaBr
 - Derivatisation with phenylboronic acid
 - Removal of excess PBA with mVAP
- GC-MS/MS with back-flush

RIC

group

Material emission solutions

automated steps

Eluate

Eluate

manual step

Extraction 10 - 200 °C

26

- Take advantage of state-of-the-art GC-MS & LC-MS
 - MS/MS, TOF: order of magnitude more sensitive
- Adapt sample preparation: Miniaturized Automated Green (solventless) – increased Productivity – Safer
 - Also "simple" operations can benefit from automation (preparation of mixtures, calibration solutions,...)
- Solutions available for
 - Environmental analysis
 - Food analysis
 - Analysis of natural products, essential oils, perfumes and consumer products

For more information: info@ric-group.com