Journée du Club d'Expertise Chimique de Méditerranée 1^{er} décembre 2017, Chateauneuf du Pape

La Chromatographie Industrielle Basse Pression Réalités et Perspectives

Didier Caire Vice President - Process Solutions - EMEA <u>didier.caire@novasep.com</u> www.novasep.com

Content

About Novasep

What we offer

Novasep's technology portfolio:

About Novasep

What we do

We deliver services for the Life Science industries with specialized & differentiating technologies

2 services

Development and contract manufacturing of active ingredients Process engineering and supply of purification equipment

What we offer

Novasep's Technology Portfolio

A wide range of technologies

Marketed products prices typically < 2€/kg From 5 – 250 kT/year

Combining technologies

Novasep's strength: combining technologies to fit your requirements (cost, performances, purity levels, yield, local conditions, ...)

Industrial Biotech Markets

Food Ingredients

- Sugar (beet, cane, liquid)
- Starch derivatives: glucose/fructose syrups for soda, beverages, food
- Milk and whey ingredients (infant milk powder, etc.)

Functional Ingredients

- Food additives with specific action
- Prebiotics: FOS / GOS
- High intensity natural sweeteners (stevia)
- Antioxidants (polyphenols, Anthocyanin)
- Omega 3

Over 650 industrial references worldwide ~30 new projects p.a.

Fermentation & Chemical Commodities

- Additives to animal feed (amino-acids, bulk antibiotics)
- Food organic acids (lactic, citric, etc.)
- Bio-based chemical building blocks to replace oil-based chemicals
- Organic chemical commodities

Novasep's technology portfolio: Chromatography

HPLC Lab equipment

This is the industrial Applexion® SC!

Chromatography, an industrial process

Operating in continuous (24/7, 350 days a year) **Low separation cost** (1 or 2 cents of euro / kg)

Novasep Industrial Biotech Low pressure chromatography installed capacity

Applexion® SC layout

Size Exclusion Chromatography (2/2)

- Product: Galacto-oligosaccharide (GOS)
- Target: DP1 DPn separation
- 8 references for GOS/FOS

Resin	XA2004/30 Na		
Volume of resin installed	45 m ³		
Number of columns	6		
Column diameter	2.2 m		
Daily capacity	18.2 TDS/day of purified GOS 5000 TDS per year		
Recovery	> 97% of GOS		
Purity	< 5% DP1		

Affinity Chromatography (1/2)

- Separation based on specific interactions with the resin
- Ligand exchange
 - Interaction between the resin and the hydroxyl groups (OH) of the sugar molecules
 - Affinity depends on the spatial configuration of the molecule
 - Works with strong cation exchangers (Ca2+, Pb2+)

Typical applications Separation of isomeric monosaccharides (e.g. glucose-fructose) Separation of polyols (e.g. sorbitol-mannitol)

Affinity Chromatography (2/2)

- Product: HFCS 55 (55% Fructose syrup)
- A proven experience with 32 industrial references

Resin	XA2004/30 Ca		
Volume of resin installed	24 to 160 m ³		
Number of columns	4 or 6 cells		
Column diameter	2 to 5 m		
Daily capacity	200 tons DS/day for a 4 cell, 4m Ø SSMB system (101 m ³ total resin)		
Fructose recovery	89%		
Fructose purity	89.9% (in the extract)		

Ion Exclusion Chromatography (1/2)

- Separation based on charge
- Works with strong cation exchangers (monovalent form: Na, K)

Ion Exclusion Chromatography (2/2)

- Product: Cane / beet molasses
- 13 engineering and industrial references
 - France, USA, Czeck Republic, Russia
 - 4 NS2P: to recover betaine

Resin	XA2004/35 K		
Volume of resin installed	120 m ³		
Number of columns	2 x 3 cells		
Column diameter	3.2 m		
Daily capacity	96 tonsDS/day		
Sugar recovery	93%		
Sugar purity	93%		

Acid Retardation Chromatography (2/2)

- Product: Citric Acid
- First plant in the world producing citric acid from biomass designed and built with Novasep
- 6 industrial references
 - 4 in China (2007 2012)
 - 2 in Austria (1999 2003)

Resin	XA3114/45		
Volume of resin installed	120 m3		
Number of columns	2 x 3 cells		
Column diameter	3.8 m		
Daily capacity	112 tonsDS/day		
Citric acid recovery	>95%		
Citric acid purity	>95%		

SMB = Simulated Moving Bed **SSMB** = Sequential Simulated Moving Bed **SC** = Sequential Chromatography

Process performance improvement Case study: Glucose/fructose separation

Applexion® Sequential Chromatography A new step in continuous chromatography

Integration of our technologies in your process

Different principles = new opportunities

Relying on principles different from distillation or crystallization, Novasep's technologies provides new purification opportunities

	Solubility in solvent	Boiling point	Size / molecular weight	Charge (ionic charge, pKa)	H bonds Hydrophobicity	Geometry configuration
Crystallization	\checkmark					
Distillation		\checkmark				
lon exclusion chromatography				✓		
Affinity chromatography					\checkmark	✓
Acid retardation chromatography				✓	✓	
Size exclusion chromatography			✓			
Filtration			\checkmark			
lon exchange				\checkmark		
Electrodialysis				\checkmark		

When to use Applexion ® SC?

Substitution or complement to traditional purification technologies

Distillation

· When it is difficult or costly

Thermosensitive products, high or close boiling points, azeotropic mixtures

Examples:

- Organic acids separation from other organics (cyanoacetic acid)
- Polvols separation from salts (pentaerythritol)

Crystallization

When it leads to limited yield or purity

To separate oligomers from monomers

To recover additional product from mother liquor

Organic / salt separation, even if the salt concentration is higher than the product one

Examples:

 Recovery of glycine and methionine from mother liquor

Chromatography efficiency independent of product / impurity ratio

Examples:

 Mono/Di/Trimers of glycerol

Applexion® SC applications: examples

Applexion® SC applications: examples

Size Exclusion Chromatography

passion & smart processes

Applexion® SC Case study 1: Chemical Polyol purification

Ion exclusion: Neutral molecule / salt separation Affinity: Hydroxylated molecules (polyol / sugar) separation

Applexion® SC Case study 2: Glycine desalting

Ion exclusion: Neutral molecule / salt separation

Selection of references

Application	Year	Technologies
Pentaerythritol desalting	2016	Applexion® SC
DL-Hydroxy-Methionine (HMTBa) purification	2016	Applexion® SC
Cyano-Acetic Acid purification	2016	Applexion® SC
DL-methionine desalting	2015	Applexion® SC
Bio-succinic acid	2014	Ion Exchange
Recovery of Glutamic Acid in mother liquor	2014	Applexion® SC
Iminodiacetic Acid mother liquor desalting	2014	Applexion® SC
Glycine mother liquor desalting	2014	Applexion® SC
Aromatic amino acids purification (tryptophan)	2013	Applexion® 3A
MEG desalting	2013	Applexion® SC
Bio-1,4-BDO	2011	Applexion® SC
Bio-1,3-PDO	2011	Microfiltration

Prochrom® Columns Line

HPLC Case study: Fatty acids separations

Affinity: Separation based on molecular geometry

Separation of DHA (DocosaHexaenoic Acid) C22-6 Omega-3 and C22-2 Omega-6

→ Complementarity of distillation and chromatography

DHA C22-6 Omega-3

C22-2 Omega-6

Distillation

Separation based on molecular weight and boiling point

Similar behavior of Omega 3 and 6

HPLC chromatography

Separation based on molecular geometry configuration and affinity with a resin phase

Easy separation of Omega 3 and 6

Breadth and Depth of our Technology Application

Example of identical technology but adapted to each scale

Thank you. Any questions?

