

Nouvelles techniques couplées pour l'analyse d'arômes, parfums – Automatisation de la préparation d'échantillons

<u>Bart Tienpont</u>, Christophe Devos, Frank David and Pat Sandra

What do we expect?

- Volatility range
 BROAD
- Polarity range WIDE
- Complex samples HIGHLY
- Matrix interferences **OMG**

Solutions in reach

- Sample preparation
 - Enrichment?
 - selective or generic?
- Separation: GC or GC-GC or GCxGC ?
- Detection: MS/ODP and... sensors?

1. Sample Preparation

Personalized Solutions for Automated Sample Preparation

Personalized Solutions for Automated Sample Preparation

Dynamic Headspace (DHS)

Research Institute for Chromatography

7

Large Volume FEDHS (LV-FEDHS)

100 μL of aqueous sample !

purged with inert gas at an elevated temperature (80°C) using DHS.

- Volatile and semi-volatile analytes are transferred into the trap (Tenax)
- After *dry purge of water*, the trap is thermally desorbed for GC analysis.

FEDHS of Flavors and Fragrances in Cosmetics

Dynamic Headspace Method 1: Very Volatile Analytes

25°C - carbon-based adsorbent trap 150 mL @ 50 mL/min

Dynamic spacespace Method 1 Method / 2012 /

25°C - carbon-based adsorbent trap 650 mL @ 100 mL/min

Dynamily the and is place dspace

Method 2: VMatheod 6 Storia Welation Avoid yiles and hydrophillic analytes

80°C - Tenax TA trap 3L @ 100 mL/min

Dynamic Headspace

Method 3: Volatile, non volatile and hydrophillic analytes

Dynamic Headspace

Method 4: TDU Multi Desorption

Dynamic Headspace

Method 4: TDU Multi Desorption

Dynamic Headspace

Method 4: TDU Multi Desorption

Dynamic Headspace

Method 4: TDU Multi Desorption

Brewed Coffee MVM Extraction

Wine Analysis using SBSE-GC-MS

Céline Franc, Frank David, Gilles de Revel , JCA

Multi-residue methods

• 2007 : Off-flavours

IBMP, EP, EG, TCA, TeCA, PCA, TBA, Géosmine

• 2010 : Markers of wine aroma (fruity)

C13-norisoprenoides and lactones

• 2010 : Pesticide residues

Chlorpyriphos

Vinclozoline

Research Institute

Multiresidue Analysis of Wine Defects

Céline Franc, Frank David, Gilles de Revel, JCA

Application : Round-Robin test SBSE-GC-MS « off-flavors"

<u>2009</u> : inter-laboratory test, 8 compounds – 9 laboratoires

Volatile phenols

nombre de laboratoires retenus :	9		
valeur assignée m :	187,6		
écart-type s* :	34,4		
limites de surveillance :	118,8	;	256,4
limites d'action :	84,4	,	290,8

🗭 RIC |

SBSE procedure for vegetables and fruit

Analysis of Baby Food by SBSE-TD-GC-MSD (mixed vegetables, rice, chicken)

QC on solid material

'Passive' Extraction

10 corks – leaching during 24h

in 500ml wine simulant (10 % Ethanol)

SBSE extraction for leachable haloanisoles:

- 100ml « extract (10 % Ethanol) »
- IS: TCA-d5 (10ng/l),
- 2 h extraction with 20 mm x 0.5 mm stir bar

Polarity?

3 Strategies

Derivatization HSSE

pentafluorobenzyl hydroxylamine (PFBHA) - BEER

Abundance

Analysis of Thiols (wine, beer,...)

- Polyfunctional thiols [3-mercaptohexan-1-ol (3MH), 3mercaptohexyl acetate (3MHA) and 4-mercapto-4-methylpentan-2one (4MMP)] are important aroma compounds. Current methods lack specificity and sensitivity.
- Derivatization with alkyl propiolate (ethyl propriolate) can be performed in-situ and, combined with SBSE, high sensitivity and good selectivity are obtained for the detection of the thioacrylates.

• See: N. Ochiai et al.

EG Silicon Twister

mSBSE using different coatings

Comparison of recovery of phenolic compounds between EG Silicon, PDMS and Seq-SBSE

J.I. Cach et al, J. Pharm Biomed Anal 78-79 (2013) 255: Analysis of Bisphenols in Cosmetics

Comparison of recovery of nitrogen heterocyclic compounds between EG Silicon, PDMS and Seq-SBSE

Comparison of recovery of alcohols between EG Silicon, PDMS and Seq-SBSE

Sequential Stir Bar Sorptive Extraction

1. SBSE in pure water

Hydrophobic compounds LogKow > 4

2. Add Salt to same sample - SBSE

Hydrophylic compounds LogKow < 4

N. Ochiai et al, J. Chromatography 1200 (2008) 72.

2. Improve Analytical Performance

Capillary Flow Technology (CFT)

Agilent CFT capabilities

Solvent Bypass

2D strategies – 4⁺ techniques

* SFC is an alternative

Agilent Deans Switch = flow selector

Selectable 1D/2D analysis of allergens in cosmetics

Abundance Abundance 4.8e+07 2e+07 matrix 4.4e+07(glycerin) 1.6e+074e+07 1.2e+07 3.6e+07 8000000 3.2e+074000000 2.8e+072.4e+0712.00 Time, min 10.40 10.80 11.20 11.60 2e+07 1.6e+071.2e+078000000 Co-elution of matrix + 4000000 farnesol 1 & 2 / isoeugenol / hexyl cinnamaldehyde 2.00 12.00 4.00 6.00 8.00 10.00 14.00 16.00 Time, min R

¹D chromatogram of a cosmetic sample (body cream)

for

Selectable 1D/2D analysis of allergens in cosmetics

Sel. 1D/2D analysis of allergens in cosmetics EIC (m/z 164, 69, 216)

Selectable 1D/2D GC-O/MS with single PFC device

Library Search Report

DataFile	C:\msdchem\1\data\DEMO_Aroma Office\DBWAX_Floralys5%.D								
PeakNo	RT	RI	Area	Area%	Hit	Name	CASNo	Entry	Library
1)	5.614	1179	84198258	0.355	99	D-Limonene	005989-27-5	15682	NIST11.L
					91	Limonene	000138-86-3	15667	NIST11.L
						Cyclohexene, 1-methyl-4-(1-			
					76	methylethenyl)-, (S)-	005989-54-8	15879	NIST11.L
2)	11.239	1442	1.05E+08	0.442	83	7-Octen-2-ol, 2,6-dimethyl-	018479-58-8	28299	NIST11.L
					74	2-Octanol, 2-methyl-6-methylene-	018479-59-9	28320	NIST11.L
3)	12.814	1514	2.59E+08	1.093	97	1,6-Octadien-3-ol, 3,7-dimethyl-	000078-70-6	26774	NIST11.L
						Azulene, 1,2,3,5,6,7,8,8a-octahydro-			
						1,4-dimethyl-7-(1-methylethenyl)-,			
4)	16.448	1688	76859118	0.324	99	[1S-(1.al	003691-11-0	64530	NIST11.L
							1000374-19-		
					99	.alphaBulnesene	9	64321	NIST11.L
					83	.alphaGuaiene	003691-12-1	64292	NIST11.L
5)	17.225	1727	5.52E+08	2.327	96	Citronellol	000106-22-9	28222	NIST11.L
					96	6-Octen-1-ol, 3,7-dimethyl-, (R)-	001117-61-9	28325	NIST11.L
					70	2-Octen-1-ol, 3,7-dimethyl-	040607-48-5	28296	NIST11.L
8)	17.6	1747	1.04E+08	0.44	80	Nopyl acetate	000128-51-8	67677	NIST11.L
						Bicyclo[4.1.0]hept-3-ene, 7,7-			
					64	dimethyl-3-vinyl-	113003-13-7	22846	NIST11.L
7)	18.704	1803	3.77E+08	1.587	94	Geraniol	000106-24-1	26608	NIST11.L
							1000132-11-		
					72	Geranyl vinyl ether	4	45595	NIST11.L
						2,6-Octadien-1-ol, 3,7-dimethyl-,			
					72	formate, (E)-	000105-86-2	47027	NIST11.L
8)	19.52	1846	6.32E+08	2.663	94	Phenylethyl Alcohol	000060-12-8	9920	NIST11.L
					70	Spiro[2,4]hepta-4,6-diene	000765-46-8	2472	NIST11.L

Comprehensive GCxGC Flow Modulator

1D analysis (ASTM HC mix)

GCxGC modulated signal

3D view

GCxGC: Perfume - good quality

GCxGC: Perfume with defect

3. Detection

Detection: Unleash the power of MS

- High sensitivity
- Accurate mass (TOF)
- EI, CI, APCI, SMB
- MS/MS

GC-Q-TOF: high resolution, high sensitivity

(mainlib) Vanillin

GC-Q-TOF: high resolution, high sensitivity

GC-Q-TOF: high resolution, high sensitivity TIC of coffee extract (non-spike) (data from Gerstel KK)

TIC and mass chromatograms of coffee extract (non-spike)

GCxGC-QTOF-MS

Tobacco smoke

²D mass chromatogram (m/z 104.0290±50 mDa)

Now we have: FEDHS-GC-GC-QTOF-MS and FEDHS-GCxGC-QTOFMS

What about Odor?

SHS-E-nose *Objective* approach

1 g, SHS @ 80°C (20 min) Injection 2 mL Alpha MOS Enose Fox 4000

Synthetic dry air: 150 mL/min Acquisition time: 500 s Acquisition period: 0.5 s

GC-MS Deconvolution

- 183 compounds in the 'odour' zone
- Concentration range 5 orders of magnitude

New GC-E-nose Configuration

Research Institute for Chromatography

66

Configuration

67

Research Institute for Chromatography

RIC

Step 1. GC-MS Analysis

Step 2. Collection of Fractions (heart-cut)

69

Step 3. Transfer of Fractions to Noses

RIC

2 Operation modes

2. Addition

- Perceptual interaction (heart-cut)
- Recombination

Discriminant Function Analysis (DFA) for ∑(HC)

... omics?

Discovering the difference in your data

Research Institute for Chromatography

Mass Profiler Professional software

Research Institute for Chromatography

Mass Profiler Professional software

- Analyze complex MS data (GC-MS, LC-MS, CE-MS, ICP-MS)
- Compare and classify sample groups
- Identify <u>differences</u> between samples
- Untargeted
- Application areas: proteomics, metabolomics, food

safety, environmental, forensics, toxicology, ...

esearch Institute or Chromatography

Workflow: from chromatograms to potential markers Group 1

PC2

ANOVA, PCA, t-tests, volcano plots, hierarchical trees, SOMs, QT clustering, and SVMs for class prediction

XCMS, MFE)

Conclusions

- volatility range
 DHS (LVDHS)
- Polarity range SBSE + variation
- Complex samples 2D-GC
- matrix interferences 2D + MS

esearch Institute or Chromatography