

Étude chirale de l'huile essentielle d'*Artemisia herba alba* par dichroïsme circulaire vibrationnel et régression linéaire multiple

Présenté par : Mohammed El Amine SAID

Journée du Club d'Expertise Chimique de Méditerranée, le 13 juin 2014

Plan

1- Introduction

2- Definitions

3- VCD spectrometer

4- Materials & Methods

5- Results

6- Conclusion

Introduction

- > Plants contain organic substances of various structure and use.
- Essential oils were widely studied through time.
- Our goal is the study the chirality of essential oils to determine the absolute configuration of the major chiral molecules.
- The vibrational circular dichroism (VCD) is a technique that was developed in the mid 70s.

Definitions

Light Polarisation

Light is an electromagnetic wave and has a polarization characteristic of the orientation of the electric field (or magnetic) in the plane perpendicular to the propagation.

Circular Dichroism (CD)

A material has a circular dichroism if it absorbs differently left (LCP) and right (RCP)

circularly polarised light.

Fig 2. Circular dichroism effect of two light rays polarized

<u>P.E.M</u>

P.E.M: Photo Elastic Modulator

Fig 3. PMA50 (Bruker Optics)

Spectroscopy parameters:

- Spectral range : 1500-1100 cm⁻¹
- Accumulation :3h =>12000 scans
- Spectral resolution : 4 cm⁻¹

Plant material

- Samples 1 and 2 of Artemesia herba alba (AHA) were collected respectively during April 2013 and July 2010 from Bechar in the south-west of Algeria and the Atlas Mountains, near Marrakech (Morocco).
- > Sample 3 is AHA essential oil (EO) of Moroccan origin purchased from Naturosources.

Fig 4. Artemesia herba alba

Extraction

Extraction was done in the laboratory of Phytochemistry and Organic Synthesis (LPSO) in

Algeria by steam distillation of water.

Fig 5. Extraction of AHA EO

*Achiral Analysis

1-GC-MS \rightarrow Qualitative analysis: Compounds identification (IUT-Marseille)

Fig 6. Agilent Technologies GC 7890A with MS 5975C VL MSD - Capillary column : HP-5MS.

Column temperature program : 2 min at 80°C, gradient from 80 to 200°C at the rate of 5°C/min, 200 to 260°C at the rate of 20°C, and held at final temperature for 5 min.

- Carrier gas, helium (flow rate of 1.2 ml/min).

*Achiral Analysis

 $\begin{array}{l} 2-\text{ GC-FID} \\ \text{(LISA/METICA)} \end{array} \rightarrow \text{Quantitative analysis : relative \%} \end{array}$

Fig 7. Agilent Technologies GC 7890A - Capillary column : HP-5.

Column temperature program : 2 min at 80°C, gradient from 80 to 200°C at the rate of 5°C/min, 200 to 260°C at the rate of 20°C, and held at final temperature for 5 min.

- Carrier gas, H₂ (flow rate of 1.2 ml/min).

*Chiral analysis

3- Chiral HPLC (CNRS, CHIROSCIENCES)

- Merck-Hitachi equipment able to test 12 chiral columns by varying also the mobile phase composition
- The detection is achieved by UV and a serial chirality detector: polarimeter or circular dichroism

Optimized conditions:

- Column : TCI-MBS.
- Carrier solvents : Heptane/Isopropanol 99/1, 1 ml/min.
- Detector: polarimeter

GC-MS & GC-FID

RI	Major compounds	EO 1 %	EO 2 %	EO 3 %
945	Camphene	3.55	3.22	6.96
974	Sabinene	0.93	1.13	0.96
1035	Eucalyptol	0.95	5.63	7.76
1107	α-Thujone	57.4	35.4	15.3
1115	β-Thujone	9.4	25.6	10.7
1150	Camphor	12.2	17.0	34.5
1173	Borneol	1.13	1.52	1.36
1491	Germacrene D	2.67	0.26	0.36
1497	Bicyclogermacrene	0.95	0.13	0.27
	Total	98.25	99.71	94.41
Total ch	niral molecules	93.82	94.40	82.27

Table 1. Chemical composition of AHA EOs.

 \geq EOs 1 and 2 are thujones chemotypes.

 \geq EO 3 is camphor chemotype.

These two chemotypes are founded in Algeria, Morroco, Tunisia, Egypt and Spain.

Chiral HPLC

By chiral HPLC the sign of enantiomers is $(-)-\alpha$ -thujone, $(+)-\beta$ -thujone, (-)-camphor and the enantiomeric excess is

Spectra of pure molecules

Spectrum reconstitution by Multiple Linear Regression (MLR)

MLR is a well-known statistical method based on ordinary least squares regression. The regression model can be written :

 $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + e$

Meaning that the observed response values are approximated by a linear combination of the values of the predictors. The coefficients of that combination are called regression coefficients or β –coefficients.

tniv -					7
)ata Matrix(1		(-)-α-thujone	(+)-β-thujone	(+)-camphor	EO
		1	2	3	
499,459	1	-0,0001	-0,0001	0,0000	0,0014
498,495	2	-0,0001	-0,0001	0,0000	0,0013
497,53	3	-0,0001	0,0000	0,0000	0,0015
496,566	4	0,0000	0,0000	0,0000	0,0018
495,602	5	0,0000	0,0000	0,0001	0,0022
494,637	6	0,0000	0,0001	0,0001	0,0025
493,673	7	0,0000	0,0001	0,0001	0,0027
492,709	8	0,0001	0,0002	0,0001	0,0028
491,745	9	0,0001	0,0002	0,0001	0,0029
490.78	10	0,0001	0,0002	0,0001	0,0030
489.816	11	0,0001	0,0003	0,0002	0,0033
488.852	12	0.0001	0.0003	0.0002	0.0036
487.887	13	0,0001	0,0003	0,0003	0,0039
486.923	14	0,0001	0,0003	0,0004	0,0040
485.959	15	0.0001	0.0003	0.0004	0.0039
484,995	16	0.0001	0,0004	0,0005	0,0037
484.03	17	0.0001	0.0004	0.0005	0.0034
483 066	18	0.0001	0.0004	0.0006	0.0030
482 102	19	0.0001	0.0005	0,0006	0.0027
102,102		0,0001	0,0005	0,0000	0,0027

Spectrum reconstitution

Spectrum reconstitution

			β-coefficients				↓ I	
β-coefficients	spectra	EO1	EO2	EO3	spectra sign	l	βsign	
β_1	(-)-α-thujone	0.73	0.39	0.27	-	and	+	$= \alpha$ -thujone is (-)
β_2	(+)-β-thujone	0.08	0.27	0.16	+	and	+	= β -thujone is (+)
β_3	(+)-camphor	- 0.15	-0.15	-0.44	+	and	-	= Camphor is (-)

Table 2. Predicted β -coefficients of VCD spectra.

The MLR β -coefficient sign allows us to know the real sign of enantiomers (absolute configuration).

The results of the MLR prediction give us the same sign of enantiomers than chiral HPLC.

Spectrum reconstitution

			β-coefficients		
β-coefficients	spectra	EO1	EO2	EO3	
β_1	(-)-α-thujone	0.73	0.39	0.27	-
β_2	(+)-β-thujone	0.08	0.27	0.16	
β_3	(+)-camphor	- 0.15	-0.15	-0.44	

Table 2. Predicted β -coefficients of VCD spectra.

Table 3. Major compounds of AHA EOs.

Major compounds	EO 1 (%)	EO 2 (%)	EO 3 (%)
(-)-α-thujone	57.40	35.40	15.30
(+)-β-thujone	9.40	25.60	10.70
(+)-camphor	12.20	17.00	34.50

Spectrum reconstitution

				β-coefficients			Majo	r	EO 1	EO 2	E
3-coefficients	spe	ctra E	O1 (%)	EO2(%)	EO3(%)	1.1	compou	nds	(%)	(%)	(
ß	(_)_a_t	huione	73 14	39 51	27 53	I	(-)-α-thuj	one	57.40	35.40	1:
Р1 В	(-)-u-u	huiona	8.62	27.97	16.46	•	(+)-β-thu	jone	9.40	25.60	10
ρ ₂	(+)-p-t	nujone	15.05	15.04	10.40		(+)-camp	hor	12.20	17.00	34
β ₃	(+)-car	nphor	15.05	15.04	44.37		Total		79	78	e
7	Fotal		96.81	82.52	88.36						
								%MI	$LR = \frac{\beta i \times \beta i}{2}$	$\sum \% CPG$	
			Table 4.	% GC-FID &	% MLR of]	EO1 🌽		% <i>M1</i>	$LR = \frac{\beta i \times \gamma}{2}$	∑%CPG ∑βi	
		EO	Table 4. 9	% GC-FID & E	% MLR of 1 0 2 %	EO1 🌽	EO 3 %	%MI	$LR = \frac{\beta i \times \beta i}{2}$	<u>Σ %CPG</u> Σβί	
N com	1ajor 1pounds	EO % GC-FID	Table 4. 9 01 % % MLI	% GC-FID & E R % GC-FII	% MLR of 1 0 2 % 0 % MLR	EO1 🖉	EO 3 % FID % N	%MI	$LR = \frac{\beta i \times \beta i}{2}$	<u>Σ%CPG</u> Σβί	
M com α-th	Iajor pounds hujone	EO % GC-FID 57.40	Table 4. 9 1 % % MLI 59,68	% GC-FID & E R % GC-FII 35.40	 % MLR of 1 0 2 % % MLR 37,34 	EO1 (Contraction) % GC- 15.3	EO 3 % FID % N 0 18	% <i>MI</i> //LR ,84	$LR = \frac{\beta i \times \beta i}{2}$	<u>Σ %CPG</u> Σβί	
M com α-th β-th	Iajor pounds hujone hujone	EO % GC-FID 57.40 9.40	Table 4. 9 1 % % MLI 59,68 7,03	% GC-FID & E R % GC-FII 35.40 25.60	 % MLR of 1 0 2 % % MLR 37,34 26,43 	EO1 % GC- 15.3 10.7	EO 3 % FID % N 0 18 0 11	% <i>MI</i> MLR ,84 ,27	$LR = \frac{\beta i \times \gamma}{2}$	<u>Σ %CPG</u> Σβί	

Table 2. Predicted β -coefficients of VCD spectra.

Table 3 Major compounds of AHA FOs

Conclusion

- A method based on the VCD spectra and Multi Linear Regression (MLR) to model the VCD spectra of *AHA* EOs.

- Determination of the absolute configuration of the major chiral constituents of *AHA* EOs

- Absolute configuration can be determined without using classic chiral chromatographic techniques.

Merci de votre attention